Multi-technological integration in a smelting site: Visualizing pollution characteristics and migration pattern

Journal of Hazardous Materials(2023)

引用 1|浏览6
暂无评分
摘要
Heavy metal(loid)s pollution of industrial legacies has become a severe environmental issue worldwide. Linking soil pollution to groundwater contaminant plumes would make invisible pollution features visible across the site, but related studies are lacking and require the convergence of multiple technologies. This study uniformly managed the soil and groundwater data in a 3D visualization model to pellucidly assess the spatial distribution of critical contaminants beyond simple drilling information. The distribution of Pb, Zn, As, and Cd in soil-groundwater system has a strong correlation to historical production, substance type, soil property, and groundwater flow direction. Over 2600 measurements of High-density electrical resistivity tomography (ERT) data were used to guarantee the exactness of soil structures. Hydraulic conductivity showed a strongest correlation (R2 = 0.86), yielding a calibrated model to reveal the anisotropic and contaminant transport in the region, with the consequent minimize the drilling tests. This study provides a template for the description of a verifiable scenario of hydrogeological conditions and pollution characteristics at smelting sites, coupled with traditional exploration and non-invasive techniques. The findings highlight the significance of visualizing the internal state of the soil-groundwater system under consideration, thus providing a basis for targeted control measures against site contamination.
更多
查看译文
关键词
Contaminated site, Soil-groundwater, Heavy metal(loid)s, Electrical resistivity tomography (ERT), Hydraulic conductivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要