Josephson current mediated by ballistic topological states in Bi 2 Te 2.3 Se 0.7 single nanocrystals

Communications Materials(2020)

引用 12|浏览0
暂无评分
摘要
Superconducting proximity devices using low-dimensional semiconducting elements enable a ballistic regime in the proximity transport. The use of topological insulators in such devices is considered promising owing to the peculiar transport properties these materials offer, as well the hope of inducing topological superconductivity and Majorana phenomena via proximity effects. Here we demonstrate the fabrication and superconducting properties of proximity Josephson devices integrating nanocrystals single of Bi 2 Te 2.3 Se 0.7 with a thickness of a few unit cells. Single junctions display typical characteristics of planar Josephson devices; junctions integrating two nanocrystals behave as nanodimensional superconducting quantum interference devices. A peculiar temperature and magnetic field evolution of the Josephson current along with the observed excess current effect point towards the ballistic proximity regime of topological channels. This suggests the proposed devices are promising for testing topological superconducting phenomena in two-dimensions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要