In vivo transduction of ETV2 improves cardiac function and induces vascular regeneration following myocardial infarction

Experimental & Molecular Medicine(2019)

引用 0|浏览0
暂无评分
摘要
Vascular regeneration in ischemic hearts has been considered a target for new therapeutic strategies. It has been reported that ETV2 is essential for vascular development, injury-induced neovascularization and direct cell reprogramming of non-endothelial cells into endothelial cells. Thus, the objective of this study was to explore the therapeutic potential of ETV2 in murine models of myocardial infarction in vivo. Direct myocardial delivery of lentiviral ETV2 into rodents undergoing myocardial infarction dramatically upregulated the expression of markers for angiogenesis as well as anti-fibrosis and anti-inflammatory factors in vivo. Consistent with these findings, echocardiography showed significantly improved cardiac function in hearts with induced myocardial infarction upon ETV2 injection compared to that in the control virus-injected group as determined by enhanced ejection fraction and fractional shortening. In addition, ETV2-injected hearts were protected against massive fibrosis with a remarkable increase in capillary density. Interestingly, major fractions of capillaries were stained positive for ETV2. In addition, ECs infected with ETV2 showed enhanced proliferation, suggesting a direct role of ETV2 in vascular regeneration in diseased hearts. Furthermore, culture media from ETV2-overexpressing cardiac fibroblasts promoted endothelial cell migration based on scratch assay. Importantly, intramyocardial injection of the adeno-associated virus form of ETV2 into rat hearts with induced myocardial infarction designed for clinical applicability consistently resulted in significant augmentation of cardiac function. We provide compelling evidence that ETV2 has a robust effect on vascular regeneration and enhanced cardiac repair after myocardial infarction, highlighting a potential therapeutic function of ETV2 as an efficient means to treat failing hearts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要