Antibacterial and biofilm-inhibiting cotton fabrics decorated with copper nanoparticles grown on graphene nanosheets

Scientific reports(2023)

引用 1|浏览5
暂无评分
摘要
Infectious pathogens can be transmitted through textiles. Therefore, additional efforts are needed to develop functional fabrics containing antimicrobial substances to prevent the growth of antibiotic-resistant bacteria and their biofilms. Here, we developed a cotton fabric coated with reduced graphene oxide (rGO) and copper nanoparticles (Cu NPs), which possessed hydrophobic, antimicrobial, and anti-biofilm properties. Once the graphene oxide was dip-coated on a cellulose cotton fabric, Cu NPs were synthesized using a chemical reduction method to fabricate an rGO/Cu fabric, which was analyzed through FE-SEM, EDS, and ICP-MS. The results of our colony-forming unit assays indicated that the rGO/Cu fabric possessed high antibacterial and anti-biofilm properties against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis , Corynebacterium xerosis, and Micrococcus luteus . Particularly, the fabric could inhibit the growth of E. coli, C. xerosis, and M. luteus with a 99% efficiency. Furthermore, our findings confirmed that the same concentrations of rGO/Cu had no cytotoxic effects against CCD-986Sk and Human Dermal Fibroblast (HDF), human skin cells, and NIH/3T3, a mouse skin cell. The developed rGO/Cu fabric thus exhibited promising applicability as a cotton material that can maintain hygienic conditions by preventing the propagation of various bacteria and sufficiently suppressing biofilm formation while also being harmless to the human body.
更多
查看译文
关键词
Biomaterials,Biotechnology,Nanobiotechnology,Nanoscience and technology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要