Charge fluctuations in the intermediate-valence ground state of SmCoIn$_5$

Communications Physics(2023)

引用 0|浏览26
暂无评分
摘要
The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn$_5$ and other Ce-based heavy fermion materials, depends strongly on the efficiency with which $f$ electrons are delocalized from the rare earth sites and participate in a Kondo lattice. Replacing Ce$^{3+}$ ($4f^1$, $J=5/2$) with Sm$^{3+}$ ($4f^5$, $J=5/2$), we show that a combination of crystal field and on-site Coulomb repulsion causes SmCoIn$_5$ to exhibit a $\Gamma_7$ ground state similar to CeCoIn$_5$ with multiple $f$ electrons. Remarkably, we also find that with this ground state, SmCoIn$_5$ exhibits a temperature-induced valence crossover consistent with a Kondo scenario, leading to increased delocalization of $f$ holes below a temperature scale set by the crystal field, $T_v$ $\approx$ 60 K. Our result provides evidence that in the case of many $f$ electrons, the crystal field remains the most important tuning knob in controlling the efficiency of delocalization near a heavy fermion quantum critical point, and additionally clarifies that charge fluctuations play a general role in the ground state of "115" materials.
更多
查看译文
关键词
Electronic properties and materials,Magnetic properties and materials,Phase transitions and critical phenomena,Superconducting properties and materials,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要