Efficient Algorithms and Hardness Results for the Weighted $k$-Server Problem

CoRR(2023)

引用 0|浏览8
暂无评分
摘要
In this paper, we study the weighted $k$-server problem on the uniform metric in both the offline and online settings. We start with the offline setting. In contrast to the (unweighted) $k$-server problem which has a polynomial-time solution using min-cost flows, there are strong computational lower bounds for the weighted $k$-server problem, even on the uniform metric. Specifically, we show that assuming the unique games conjecture, there are no polynomial-time algorithms with a sub-polynomial approximation factor, even if we use $c$-resource augmentation for $c < 2$. Furthermore, if we consider the natural LP relaxation of the problem, then obtaining a bounded integrality gap requires us to use at least $\ell$ resource augmentation, where $\ell$ is the number of distinct server weights. We complement these results by obtaining a constant-approximation algorithm via LP rounding, with a resource augmentation of $(2+\epsilon)\ell$ for any constant $\epsilon > 0$. In the online setting, an $\exp(k)$ lower bound is known for the competitive ratio of any randomized algorithm for the weighted $k$-server problem on the uniform metric. In contrast, we show that $2\ell$-resource augmentation can bring the competitive ratio down by an exponential factor to only $O(\ell^2 \log \ell)$. Our online algorithm uses the two-stage approach of first obtaining a fractional solution using the online primal-dual framework, and then rounding it online.
更多
查看译文
关键词
efficient algorithms,hardness results,weighted
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要