Gastrointestinal microbiome, resistance genes, and risk assessment of heavy metals in wild giant pandas.

The Science of the total environment(2023)

引用 1|浏览18
暂无评分
摘要
The gastrointestinal microbiome (GM) of giant panda (GP) plays an important role in food utilization and health and is also an essential reservoir of resistance genes. Currently, little knowledge is available on the GM, acid resistance genes (AcRGs), antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs) in wild GPs. We sampled the gastrointestinal tract of a dead GP and explored the composition and function of GM and resistance genes through cryo-scanning electron microscopy, metagenomic sequencing, and genome-resolved metagenomics. The concentration of metals in the gastrointestinal lumen, feces, bamboo, and soil was measured by inductively coupled plasma mass spectrometry. Results showed that the composition of the microbiota varied in different gastrointestinal regions. Fecal microbiota was highly associated with small intestinal and colonic microbes. The lignocellulosic cross-linked structure of bamboo was destroyed in the stomach initially and destroying degree increased from stomach to anus. Reconstruction of metagenome-assembled-genomes confirmed that core GM, e.g., Streptococcus, Clostridium, Lactococcus, Leuconostoc, and Enterococcus, carried genes encoding the lignocellulose degradation enzyme. There were no significant differences of resistance genes between gastrointestinal and fecal samples, except MGEs. Multidrug and multi-metal resistance genes were predominant in all samples, while the transposase gene tnpA was the major type of MGE. Significant correlations were observed among the abundance of GM, resistance genes, and MGEs. Gastrointestinal and fecal mercury and chromium were the main metals influencing GM and resistance genes. The content of gastrointestinal and fecal metals was significantly associated with the presence of the same metals in bamboo, which could pose a threat to the health of wild GPs. This study characterized the gastrointestinal microbiome of wild GPs, providing new evidence for the role of the gastrointestinal microbiome in degrading lignocellulose from bamboo and highlighting the urgent need to monitor metal levels in soil and bamboo.
更多
查看译文
关键词
GP, Gastrointestinal microbiota, Heavy metals, Antibiotic resistance genes, Metal resistance genes, Mobile genetic elements
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要