Unveiling protein-protein interaction potential through Monte Carlo simulation combined with small-angle X-ray scattering.

International journal of biological macromolecules(2023)

引用 0|浏览1
暂无评分
摘要
Protein interactions are investigated under different conditions of lysozyme concentration, temperature and ionic strength by means of in-solution small angle X-Ray scattering (SAXS) experiments and Monte Carlo (MC) simulations. Initially, experimental data were analysed through a Hard-Sphere Double Yukawa (HSDY) model combined with Random Phase Approximation (RPA), a closure relationship commonly used in the literature for monodisperse systems. We realized by means of MC that the HSDY/RPA modelling fails to describe the protein-protein pair potential for moderated and dense systems at low ionic strength, mainly due to inherent distortions of the RPA approximation. Our SAXS/MC results thus show that lysozyme concentrations between 2 (diluted) and 20 mg/mL (not crowded) present similar protein-protein pair potential preserving the values of surface net charge around 7 e, protein diameter of 28 Å, decay range of attractive well potential of 3 A and a depth of the well potential varying from 1 to 5 kT depending on temperature and salt addition. Noteworthy, we here propose a novel method to analyse the SAXS data from interacting proteins through MC simulations, which overcomes the deficiencies presented by the use of a closure relationship. Furthermore, this new methodology of combining SAXS with MC simulations gives a step forward to investigate more complex systems as those composed of a mixture of proteins of distinct species presenting different molecular weights (and hence sizes) and surface net charges at low, moderate and very dense systems.
更多
查看译文
关键词
monte carlo simulation,scattering,protein-protein,small-angle,x-ray
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要