Amphetamine-induced reverse transport of dopamine does not require cytosolic Ca2+

The Journal of biological chemistry(2023)

引用 1|浏览8
暂无评分
摘要
Amphetamines (AMPHs) are substrates of the dopamine transporter (DAT) and reverse the direction of dopamine (DA) transport. This has been suggested to depend on activation of Ca-dependent pathways, but the mechanism underlying reverse transport via endogenously expressed DAT is still unclear. Here, to enable concurrent visualization by live imaging of extracellular DA dynamics and cytosolic Ca levels, we employ the fluorescent Ca sensor jRGECO1a expressed in cultured dopaminergic neurons together with the fluorescent DA sensor GRAB expressed in co-cultured "sniffer" cells. In the presence of the Na-channel blocker tetrodotoxin to prevent exocytotic DA release, AMPH induced in the cultured neurons a profound dose-dependent efflux of DA that was blocked both by inhibition of DAT with cocaine and by inhibition of the vesicular monoamine transporter-2 (VMAT2) with Ro-4-1284 or reserpine. However, the AMPH-induced DA efflux was not accompanied by an increase in cytosolic Ca and was unaffected by blockade of voltage-gated calcium channels or chelation of cytosolic Ca. The independence of cytosolic Ca was further supported by activation of NMDA-type ionotropic glutamate receptors leading to a marked increase in cytosolic Ca without affecting AMPH-induced DA efflux. Curiously, AMPH elicited spontaneous Ca spikes upon blockade of the D2 receptor, suggesting that AMPH can regulate intracellular Ca in an autoreceptor-dependent manner regardless of the apparent independence of Ca for AMPH-induced efflux. We conclude that AMPH-induced DA efflux in dopaminergic neurons does not require cytosolic Ca but is strictly dependent on the concerted action of AMPH on both VMAT2 and DAT.
更多
查看译文
关键词
amphetamine,dopamine transporter,calcium signaling,genetically encoded dopamine sensor,biosensors,live fluorescent imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要