Enumeration of spin-space groups: Towards a complete description of symmetries of magnetic orders

arXiv (Cornell University)(2023)

引用 11|浏览0
暂无评分
摘要
Symmetries of three-dimensional periodic scalar fields are described by 230 space groups (SGs). Symmetries of three-dimensional periodic (pseudo-) vector fields, however, are described by the spin-space groups (SSGs), which were initially used to describe the symmetries of magnetic orders. In SSGs, the real-space and spin degrees of freedom are unlocked in the sense that an operation could have different spacial and spin rotations. SSGs gives a complete symmetry description of magnetic structures, and have natural applications in the band theory of itinerary electrons in magnetically ordered systems with weak spin-orbit coupling.\textit{Altermagnetism}, a concept raised recently that belongs to the symmetry-compensated collinear magnetic orders but has non-relativistic spin splitting, is well described by SSGs. Due to the vast number and complicated group structures, SSGs have not yet been systematically enumerated. In this work, we exhaust SSGs based on the invariant subgroups of SGs, with spin operations constructed from three-dimensional (3D) real representations of the quotient groups for the invariant subgroups. For collinear and coplanar magnetic orders, the spin operations can be reduced into lower dimensional real representations. As the number of SSGs is infinite, we only consider SSGs that describe magnetic unit cells up to 12 times crystal unit cells. We obtain 157,289 non-coplanar, 24,788 coplanar-non-collinear, and 1,421 collinear SSGs. The enumerated SSGs are stored in an online database at \url{https://cmpdc.iphy.ac.cn/ssg} with a user-friendly interface. We also develop an algorithm to identify SSG for realistic materials and find SSGs for 1,626 magnetic materials. Our results serve as a solid starting point for further studies of symmetry and topology in magnetically ordered materials.
更多
查看译文
关键词
symmetries,groups,spin-space
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要