Testing and Development of Transfer Functions for Weighing Precipitation Gauges in WMO-SPICE

crossref(2017)

引用 0|浏览0
暂无评分
摘要
Abstract. Adjustments for the undercatch of solid precipitation caused by wind were developed for different weighing gauge/wind shield combinations tested in WMO-SPICE. These include several different manufacturer-provided unshielded and single-Alter shielded weighing gauges, a MRW500 precipitation gauge within a small, manufacturer-provided shield, and host-provided precipitation gauges within double-Alter, Belfort double-Alter, and small Double-Fence Intercomparison Reference (SDFIR) shields. Previously-derived adjustments were also tested on measurements from each weighing gauge/wind shield combination. The transfer functions developed specifically for each of the different types of unshielded and single-Alter shielded weighing gauges did not perform significantly better than the more generic and universal transfer functions developed previously using measurements from eight different WMO-SPICE sites. This indicates that wind shield type (or lack thereof) is more important in determining the magnitude of wind-induced undercatch than the type of weighing precipitation gauge. It also demonstrates the potential for widespread use of the previously-developed, multi-site single-Alter shielded and unshielded transfer functions. In addition, corrections for the lower-porosity Belfort double-Alter shield and a standard double-Alter shield were developed and tested using measurements from two separate sites for the first time. Among all of the manufacturer-provided shields tested, with an average undercatch of about 5 %, the Belfort double Alter shield required the least amount of correction, and caught ~ 80 % of the reference amount of precipitation even in snowy conditions with wind speeds greater than 5 m s−1. The SDFIR-shielded gauge accumulated 98 % of the Double-Fence Automated Reference (DFAR) precipitation amount on average, accumulated 90 % of the DFAR accumulation in high winds, and was almost indistinguishable from the full-sized DFAR used as a reference. In general, the more effective wind shields, that were associated with smaller unadjusted errors, also produced more accurate measurements after adjustment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要