Pieces of 2D materials: The next step to crystallize the polycrystalline domains

Matter(2023)

引用 0|浏览16
暂无评分
摘要
Two-dimensional (2D) transition metal dichalcogenides (TMDs) offer the tantalizing potential for pushing technology nodes below 1 nm. However, their scalable adoption for non-silicon (Si) electronics has been challenging. Achieving the lab-to-fab transition of 2D TMDs requires disruptive innovations in upscalable epitaxy growth, reaction mechanisms, defect passivation, and high-throughput manufacturing paradigms. This perspective discusses the emerging step-directed epitaxy, which begins with low steps and exploits the surface reconstruction of photolithographically defined channels, affording arrays of nanoribbons with widths approaching those needed for digital electronics applications. An energy-minimized, structured substrate-epilayer configuration is established. Notably, using these energetically favorable steps as catalytically active sites could have profound implications for membrane science, water desalination, radiative cooling, and lithium extraction industries. Finally, leveraging the power of artificial intelligence (AI), the upscale production of edge-directed epitaxy growth of single-crystal 2D TMDs can be accelerated, leading to their widespread adoption in non-Si electronics and other industries.
更多
查看译文
关键词
2d materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要