DeeperGCN: Training Deeper GCNs with Generalized Aggregation Functions.

IEEE Transactions on Pattern Analysis and Machine Intelligence(2023)

引用 3|浏览2
暂无评分
摘要
Graph Neural Networks (GNNs) have been drawing significant attention to representation learning on graphs. Recent works developed frameworks to train very deep GNNs and showed impressive results in tasks like point cloud learning and protein interaction prediction. In this work, we study the performance of such deep models in large-scale graphs. In particular, we look at the effect of adequately choosing an aggregation function on deep models. We find that GNNs are very sensitive to the choice of aggregation functions (e.g. mean, max, and sum) when applied to different datasets. We systematically study and propose to alleviate this issue by introducing a novel class of aggregation functions named Generalized Aggregation Functions. The proposed functions extend beyond commonly used aggregation functions to a wide range of new permutation-invariant functions. Generalized Aggregation Functions are fully differentiable, where their parameters can be learned in an end-to-end fashion to yield a suitable aggregation function for each task. We show that equipped with the proposed aggregation functions, deep residual GNNs outperform state-of-the-art in several benchmarks from Open Graph Benchmark (OGB) across tasks and domains. The code and models for reproducing our experiments are available at https://github.com/lightaime/deep_gcns_torch/tree/master/examples/ogb.
更多
查看译文
关键词
deepergcn gcns,aggregation,training
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要