Exploring hafnium oxide's potential for passivating contacts for silicon solar cells

A. Wratten,S. L. Pain, A. Yadav,E. Khorani, T. Niewelt,L. Black, G. Bartholazzi,D. Walker,N. E. Grant,J. D. Murphy

Solar Energy Materials and Solar Cells(2023)

引用 0|浏览11
暂无评分
摘要
We investigate the potential of ultra-thin HfO2 films grown by atomic layer deposition for passivating contacts to silicon focusing on variations in film thickness and post-deposition annealing temperature. A peak in passivation quality - as assessed by carrier lifetime measurements - is reported for 2.2 nm thick films annealed at 475 degrees C, for which a surface recombination velocity <1 cm/s is determined. For films <2.2 nm thick, there is a marked decrease in passivation quality. X-ray diffraction highlights a change from crystallised monoclinic to amorphous HfO2 as film thickness decreases from 12 nm to 2.2 nm. Kelvin probe results indicate that as-deposited 2.2-12 nm films have similar effective work functions, although the work function of 1 nm films is considerably lower. Upon post-deposition annealing in vacuum, all films exhibit a reduction in effective work function at temperatures coincident with the onset of passivation in air-annealed samples. An initial investigation into the contact resistivity in a passivating contact structure utilizing HfO2 reveals a strong post-deposition annealing temperature dependence, with the lowest resistance achieved below 375 degrees C, followed by a decrease in performance as temperature increases towards the optimal temperature for passivation (475 degrees C). Limitations of the contact structure used are discussed.
更多
查看译文
关键词
Silicon,Passivation,Contact,HfO2,Atomic layer deposition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要