The computation of $\zeta(2k)$, $\beta(2k+1)$ and beyond by using telescoping series

arXiv (Cornell University)(2023)

引用 0|浏览8
暂无评分
摘要
We present some simple proofs of the well-known expressions for \[ \zeta(2k) = \sum_{m=1}^\infty \frac{1}{m^{2k}}, \qquad \beta(2k+1) = \sum_{m=0}^\infty \frac{(-1)^m}{(2m+1)^{2k+1}}, \] where $k = 1,2,3,\dots$, in terms of the Bernoulli and Euler polynomials. The computation is done using only the defining properties of these polynomials and employing telescoping series. The same method also yields integral formulas for $\zeta(2k+1)$ and $\beta(2k)$. In addition, the method also applies to series of type \[ \sum_{m\in\mathbb{Z}} \frac{1}{(2m-\mu)^s}, \qquad \sum_{m\in\mathbb{Z}} \frac{(-1)^m}{(2m+1-\mu)^s}, \] in this case using Apostol-Bernoulli and Apostol-Euler polynomials.
更多
查看译文
关键词
$\beta2k+1$
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要