Micromechanical characterizations and viscoelastic modeling reveal elastic and viscoelastic heterogeneities in ovarian tissue and the significant viscoelastic contribution to the apparent elastic modulus determined by AFM indentation

Acta biomaterialia(2023)

引用 1|浏览5
暂无评分
摘要
Ovarian follicles develop in a highly regulated mechanical microenvironment and disruptions to the microenvironment may cause infertility. However, the viscoelastic properties of the ovarian tissue are not well studied. Here, we characterize both the elastic and viscoelastic properties of ovarian tissue from both reproductively older and younger domestic cats using atomic force microscopy (AFM) indentation and viscoelastic models of stress relaxation. Importantly, our analyses reveal the apparent elastic modulus obtained from the conventional AFM indentation measurement is significantly higher than the intrinsic elastic modulus and insignificantly different from the equivalent elastic modulus that is the summation of the intrinsic elastic modulus and the viscoelastic contribution to modulus at time 0. Interestingly, the ovarian cortex of both reproductive age groups has a higher apparent/intrinsic modulus than that of the medulla. Furthermore, two different kinetics of stress relaxation are identified with rate constants of ∼1 s and ∼20–40 s, respectively. Moreover, the rate constant of the slow kinetics is significantly different between the cortex and medulla in the reproductively older ovaries. Finally, these mechanical heterogeneities appear to follow the heterogeneous distribution of hyaluronic acid (HA) in the ovary. These findings may be invaluable to the development of biomimetic follicle culture for treating infertility.
更多
查看译文
关键词
Viscoelasticity,Stress relaxation,Follicle,Hyaluronic acid,Collagen
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要