Thermodynamic Limit for Excitonic Light-Emitting Diodes

PHYSICAL REVIEW LETTERS(2023)

引用 0|浏览4
暂无评分
摘要
We derive the thermodynamic limit for organic light-emitting diodes (OLEDs), and show that strong exciton binding in these devices requires a higher voltage to achieve the same luminance as a comparable inorganic LED. The OLED overpotential, which does not reduce the power conversion efficiency, is minimized by having a small exciton binding energy, a long exciton lifetime, and a large Langevin coefficient for electron-hole recombination. Based on these results, it seems likely that the best phosphorescent and thermally activated delayed fluorescence OLEDs reported to date approach their thermodynamic limit. The framework developed here is broadly applicable to other excitonic materials, and should therefore help guide the development of low voltage LEDs for display and solid-state lighting applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要