Production of Blended Poly(acrylonitrile): Poly(ethylenedioxythiophene):Poly(styrene sulfonate) Electrospun Fibers for Neural Applications

Polymers(2023)

引用 3|浏览13
暂无评分
摘要
This study describes, for the first time, the successful incorporation of poly(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in Poly(acrylonitrile) (PAN) fibers. While electroconductive PEDOT:PSS is extremely challenging to electrospun into fibers. Therefore, PAN, a polymer easy to electrospun, was chosen as a carrier due to its biocompatibility and tunable chemical stability when cross-linked, particularly using strong acids. PAN:PEDOT:PSS blends, prepared from PEDOT:PSS Clevios PH1000, were electrospun into fibers (PH1000) with a diameter of 515 & PLUSMN; 120 nm, which after being thermally annealed (PH1000 24H) and treated with heated sulfuric acid (PH1000 H2SO4), resulted in fibers with diameters of 437 & PLUSMN; 109 and 940 & PLUSMN; 210 nm, respectively. The fibers obtained over the stepwise process were characterized through infra-red/Raman spectroscopy and cyclic voltammetry. The final fiber meshes showed enhanced electroconductivity (3.2 x 10(-3) S cm(-1), four-points-assay). Fiber meshes biocompatibility was evaluated using fibroblasts and neural stem cells (NSCs) following, respectively, the ISO10993 guidelines and standard adhesion/proliferation assay. NSCs cultured on PH1000 H2SO4 fibers presented normal morphology and high proliferation rates (0.37 day(-1) vs. 0.16 day(-1) for culture plate), indicating high biocompatibility for NSCs. Still, the low initial NSC adhesion of 7% calls for improving seeding methodologies. PAN:PEDOT:PSS fibers, here successful produced for the first time, have potential applications in neural tissue engineering and soft electronics.
更多
查看译文
关键词
neural tissue engineering,materials science and chemistry,spin-coating,electrochemically active blends,neural stem cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要