A novel missense mutation in the CRYBA2 caused autosomal dominant presenile cataract in a Chinese family

Molecular genetics and genomics : MGG(2023)

引用 0|浏览0
暂无评分
摘要
Presenile cataract is a relatively rare type of cataract, but its genetic mechanisms are currently not well understood. The precise identification of these causative genes is crucial for effective genetic counseling for patients and their families. The aim of our study was to identify the causative gene associated with presenile cataract in a Chinese family. In February 2020, a four-generation pedigree of presenile cataract patients was recruited at the 2nd Affiliated Hospital of Kunming Medical University. One patient and her healthy husband from the family underwent whole exome sequencing. The variant was validated through sanger sequencing, and co-segregation analysis was conducted in all family members to assess its pathogenicity. Molecular dynamics simulation (MDS) was used to analyze the conformation of both the wild type and pathogenic mutant loci p.Y153H of CRYBA2. We identified presenile cataract in the pedigree, which follows an autosomal-dominant pattern of inheritance. The family includes five clinically affected patients who all developed presenile cataract between the ages from 24 to 30. We confirmed the pathogenicity of a heterozygous missense variant (NM_057093:c.457T >C) in CRYBA2 within this family. The affected amino acid demonstrates high conservation across species. Subsequent sanger sequencing confirmed co-segregation of the disease in all family members. MDS analysis revealed that the p.Y153H mutant disrupted hydrogen bond formation between Y153 and R193 within the two β-strands of the fourth Greek key domain, leading to destabilization of the βA2-crystallin. In conclusion, a novel causative mutation (NM_057093:c.457T>C) in CRYBA2 might contribute to autosomal dominant presenile cataract.
更多
查看译文
关键词
Autosomal dominant, Presenile cataract, CRYBA2, Gene mutation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要