Giant confinement of excited surface electrons in a two-dimensional metal-organic porous network

arXiv (Cornell University)(2023)

引用 0|浏览10
暂无评分
摘要
Two-dimensional metal-organic porous networks (2D-MOPNs) are highly ordered quantum boxes for exploring surface confinements. In this context, the electron confinement from occupied Shockley-type surface states (SS) has been vigorously studied in 2D-MOPNs. In contrast, the confinement of excited surface states, such as image potential states (IPSs), remains elusive. In this work, we apply two-photon photoemission to investigate the confinement exemplarily for the first image state in a Cu-coordinated T4PT porous network (Cu-T4PT). Due to the lateral potential confinement in the Cu-T4PT, periodic replicas of the IPS as well as the SS are present in a momentum map. Surprisingly, the first IPS transforms into a nearly flat band with a substantial increase of the effective mass (> 150 %), while the band dispersion of the SS is almost unchanged. The giant confinement effect of the excited electrons can be attributed to the wavefunction location of the first IPS perpendicular to the surface, where the majority probability density mainly resides at the same height as repulsive potentials formed by the Cu-T4PT network. This coincidence leads to a more effective scattering barrier to the IPS electrons, which is not observed in the SS. Our findings demonstrate that the vertical potential landscape in a porous architecture also plays a crucial role in surface electron confinement.
更多
查看译文
关键词
excited surface electrons,giant confinement,two-dimensional,metal-organic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要