NPM1 mutation reprograms leukemic transcription network via reshaping TAD topology

Leukemia(2023)

引用 0|浏览12
暂无评分
摘要
C-terminal mutation of Nucleophosmin 1 ( NPM1 C+ ) was thought to be a primary driving event in acute myeloid leukemia (AML) that reprograms leukemic-associated transcription programs to transform hematopoietic stem and progenitor cells (HSPCs). However, molecular mechanisms underlying NPM1 C+ -driven leukemogenesis remain elusive. Here, we report that NPM1 C+ activates signature HOX genes and reprograms cell cycle regulators by altering CTCF-driven topologically associated domains (TADs). Hematopoietic-specific NPM1 C+ knock-in alters TAD topology leading to disrupted regulation of the cell cycle as well as aberrant chromatin accessibility and homeotic gene expression, which results in myeloid differentiation block. Restoration of NPM1 within the nucleus re-establishes differentiation programs by reorganizing TADs critical for myeloid TFs and cell cycle regulators that switch the oncogenic MIZ1/MYC regulatory axis in favor of interacting with coactivator NPM1/p300, and prevents NPM1 C+ -driven leukemogenesis. In sum, our data reveal that NPM1 C+ reshapes CTCF-defined TAD topology to reprogram signature leukemic transcription programs required for cell cycle progression and leukemic transformation.
更多
查看译文
关键词
Acute myeloid leukaemia,Haematopoietic stem cells,Medicine/Public Health,general,Internal Medicine,Intensive / Critical Care Medicine,Cancer Research,Oncology,Hematology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要