A "bulldozer" driven by anoxic bacteria for pancreatic cancer chemo-immunotherapy.

Journal of controlled release : official journal of the Controlled Release Society(2023)

引用 1|浏览4
暂无评分
摘要
Immune evasion is a major obstacle for pancreatic ductal adenocarcinoma (PDAC) therapy. Inhibition of autophagy can improve antigen presentation and enlarge immunogenic cell death (ICD) effect to generate a strong anti-tumor immune response. However, abundant extracellular matrix dominated by hyaluronic acid (HA) hinders the deep penetration of autophagy inhibitors and ICD inducers. Herein, an intelligent autophagy inhibitor hydroxychloroquine (HCQ) and chemotherapeutic drug doxorubicin (DOX) co-loaded "bulldozer" (HD@HH/EcN) driven by anoxic bacteria was constructed for PDAC chemo-immunotherapy. Results demonstrated that probiotic Escherichia coli 1917 (EcN) could carry hyaluronidases (HAases)-hybrided albumin nanoparticles (HD@HH) to reach PDAC tumor tissue quickly and accurately. Thereafter, HAases can efficiently cleave the tumor matrix barrier and promote HD@HH/EcN to accumulate at tumor hypoxic core significantly. After that, high level of glutathione (GSH) in tumor microenvironment (TME) induces intermolecular disulfide bond in HD@HH nanoparticles breakage, to precisely release HCQ and DOX. DOX can induce ICD effect. Meanwhile, HCQ can amplify DOX induced ICD effect by inhibiting tumor autophagy, which further increase cell surface expression of major histocompatibility complex class I (MHC-I) and augment recruitment of CD8+ T cell to improve immunosuppressive TME. This study provides a new strategy for PDAC chemo-immunotherapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要