On the bandgap underestimation of delafossite transparent conductive oxides CuMO2 (M = Al, Ga and In): Role of pseudopotentials.

The Journal of chemical physics(2023)

引用 0|浏览3
暂无评分
摘要
We report a first-principles study on the electronic and optical properties of delafossite CuMO2 (M = Al, Ga and In) using the recently developed hybrid functional pseudopotentials. We obtain trends of the fundamental and optical gaps with increasing M-atomic number, in agreement with experiment. In particular, we reproduce the experimental fundamental gap, optical gap, and Cu 3d energy of CuAlO2 almost perfectly, in contrast to the various calculations that have traditionally focused on valence electrons, which are unable to reproduce these key properties simultaneously. Since all that distinguishes our calculations is simply the use of a different Cu pseudopotential with a partially exact exchange interaction, this suggests that an inappropriate description of the electron-ion interaction may play a role in the density functional theory bandgap problem for CuAlO2. Applying Cu hybrid pseudopotentials to CuGaO2 and CuInO2 is also effective, yielding optical gaps that are very close to experiment. However, due to the limited experimental data for these two oxides, a comprehensive comparison as that for CuAlO2 is not possible. Furthermore, our calculations yield large exciton binding energies for delafossite CuMO2, all around 1 eV.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要