Novel PdPtCu Nanozymes for Reprogramming Tumor Microenvironment to Boost Immunotherapy Through Endoplasmic Reticulum Stress and Blocking IDO-Mediated Immune Escape.

Small (Weinheim an der Bergstrasse, Germany)(2023)

引用 3|浏览3
暂无评分
摘要
Breaking immunosuppressive tumor microenvironment (TME) has unique effects on inhibiting tumor growth and recurrence. Here, an endoplasmic reticulum (ER) targeted PdPtCu nanozyme (PNBCTER ) is prepared to boost immunotherapy. First, PNBCTER has three kinds of enzyme activities, including catalase (CAT), glutathione oxidase (GSHOx), and peroxidase (POD)-like activities, which can reshape the TME. Second, PNBCTER kills tumor cells by photodynamic therapy (PDT) and photothermal therapy (PTT). Third, guided by TER , PNBCTER not only realizes the combination therapy of PDT, PTT and chemodynamic therapy (CDT), but also damages the ER of tumor cells and actives antitumor immune response, which breaks through the immune blockade of TME. Finally, the NLG919 blocks the tryptophan/kynurenine immune escape pathway and reverses the immunosuppressive TME. The strategy that reshaping the TME by enzyme catalysis and breaking immunosuppression provides a novel way for the application of combination therapy in tumor.
更多
查看译文
关键词
reprogramming tumor microenvironment,immunotherapy,endoplasmic reticulum stress,immune,nanozymes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要