Organic-inorganic hybrid crystal-assisted etching of nickel foam for the collectively exhaustive electrochemical performance of oxygen evolution reaction.

Chemistry (Weinheim an der Bergstrasse, Germany)(2023)

引用 0|浏览11
暂无评分
摘要
An organic-inorganic hybrid crystal, violet-crystal (VC), was used to etch the nickel foam (NF) to fabricate a self-standing electrode for the water oxidation reaction. The efficacy of VC-assisted etching manifests the promising electrochemical performance towards the oxygen evolution reaction (OER), requiring only ~356 and ~376 mV overpotentials to reach 50 and 100 mA cm-2, respectively. The OER activity improvement is attributed to the collectively exhaustive effects arising from the incorporation of various elements in the NF, and the enhancement of active site density. Furthermore, the self-standing electrode is robust, exhibiting a stable OER activity after 4,000 cyclic voltammetry cycles, and ~ 50 h. The anodic transfer coefficients (aa) show that the first electron transfer step is the rate-determining step on the surface of NF-VCs-1.0 (NF etched by 1 g of VCs) electrode, while the chemical step involving dissociation following the first electron transfer step is identified as the rate-limiting step in other electrodes. The lowest Tafel slope value observed in the NF-VCs-1.0 electrode indicates the high surface coverage of oxygen intermediates and more favorable OER reaction kinetics, as confirmed by high interfacial chemical capacitance and low charge transport/interfacial resistance.
更多
查看译文
关键词
nickel foam,collectively exhaustive electrochemical performance,oxygen evolution reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要