The Effect of 3D Printing Tilt Angle on the Penetration of 3D-Printed Microneedle Arrays.

Micromachines(2023)

引用 1|浏览0
暂无评分
摘要
Microneedle arrays (MNAs) are emerging devices that are mainly used for drug delivery and diagnostic applications through the skin. Different methods have been used to fabricate MNAs. Recently developed fabrication methods based on 3D printing have many advantages compared to conventional fabrication methods, such as faster fabrication in one step and the ability to fabricate complex structures with precise control over their geometry, form, size, and mechanical and biological properties. Despite the several advantages that 3D printing offers for the fabrication of microneedles, their poor penetration capability into the skin should be improved. MNAs need a sharp needle tip to penetrate the skin barrier layer, the stratum corneum (SC). This article presents a method to improve the penetration of 3D-printed microneedle arrays by investigating the effect of the printing angle on the penetration force of MNAs. The penetration force needed to puncture the skin for MNAs fabricated using a commercial digital light processing (DLP) printer, with different printing tilt angles (0-60°), was measured in this study. The results showed that the minimum puncture force was achieved using a 45° printing tilt angle. Using this angle, the puncture force was reduced by 38% compared to MNAs printed with a tilting angle of 0°. We also identified that a tip angle of 120° resulted in the smallest penetration force needed to puncture the skin. The outcomes of the research show that the presented method can significantly improve the penetration capability of 3D-printed MNAs into the skin.
更多
查看译文
关键词
microneedle,microneedle array,3D printing,penetration,tilting angle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要