Zinc-based subcuticular absorbable staples: An in vivo and in vitro study.

Acta biomaterialia(2023)

引用 0|浏览5
暂无评分
摘要
A zinc-nutrient element alloy (Zn-1.0Cu-0.5Ca) was developed into subcuticular absorbable staples (SAS) as a robust alternative to the commercially available poly(l-lactide-co-glycolide) (PLGA) SAS for the first time. The fixation properties of the Zn SAS were measured via pull-out tests and in-situ lap-shear pull-out test comparatively against the PLGA SAS. The Zn SAS exhibited fixation force of 18.9±0.2 N, which was over three times higher than that of PLGA SAS (5.5±0.1 N). The Zn SAS was used to close incision wounds in a SD rat model for biodegradability and biocompatibility characterisation at 1, 4 and 12 weeks. The Zn SAS showed uniform degradation behaviour after in vivo implantation at the average rate of 198±54, 112±28, and 70±24 μm/y after 1, 4, and 12 weeks, which reduced the fixation force to 16.8±1.1 N, 15.4±0.9 N, 12.7±0.7 N, respectively. These findings showed the potential of the Zn SAS for the closure of heavy loading and slowing healing tissues. The Zn SAS enabled successful closure and healing of the incision wound, similar to the PLGA staples. However, the slow long-term degradation rate of the Zn SAS may lead to unnecessary implant retention. In addition, the alloy SAS resulted in higher local foreign body responses due to their stiffness. Reducing the implant cross-section profile and applying low stiffness and a corrosion-accelerating coating are suggested as possible approaches to reduce post-service implant retention and improve the biocompatibility of the Zn SAS. STATEMENT OF SIGNIFICANCE: This work reports the fabrication of the first metallic subcuticular absorbable staples (SAS) made from Zn-Cu-Ca alloy for skin wound closure applications. The Zn-based SAS were characterised in vitro and in vivo (SD rat model) for biodegradability, fixation properties, biocompatibility and inflammatory responses, which were compared against the commercially available PLGA-based SAS. The Zn-based SAS provided a secure attachment of the full-thickness wounds on SD rats and allowed successful healing during the 12-week service period. In addition, the in vitro results showed that the Zn-based SAS provided more than three times higher fixation strength than the commercial PLGA, indicating the potential of the Zn-based SAS for load-bearing wound closure application.
更多
查看译文
关键词
Absorbable subcuticular staple,Wound closure,Zn alloy,Biodegradability,Biomechanical properties,In vivo implantation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要