Phototherapy and DNA Damage: A Systematic Review.

The Journal of clinical and aesthetic dermatology(2023)

引用 0|浏览2
暂无评分
摘要
Phototherapy has gained popularity in the recent decades for the treatment of various immune-mediated dermatological conditions since it is more-cost effective and less toxic compared to systemic therapies. This systematic review aims to inform dermatology providers of the risks and benefits of phototherapy, especially in patients at risk for malignancies. Ionizing energy from phototherapy results in DNA photolesions, namely of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs). Without adequate repair, these mutations increase the risk for carcinogenesis. Additionally, phototherapy can also indirectly cause DNA damage through the formation of reactive oxygen species (ROS), which damage of several structural and functional proteins and DNA. When choosing a phototherapy modality, it also important to take into consideration the side effect profiles associated with each modality. For instance, a 10-fold higher dose of NB-UVB is required to produce a similar amount of CPDs compared with BB-UVB. Patients who undergo UVA with psoralen (PUVA) can be susceptible to developing skin malignancies up to 25 years after receiving their last treatment. It would behoove providers to consider optimal radiation dosage given each patients' level of skin pigmentation and potential for photoadaptation. Additionally, there are measures have been proposed to minimize deleterious skin changes, such as a 42-degree Celsius heat treatment using a 308nm excimer laser prior to UVB phototherapy and low frequency, low intensity electromagnetic fields along with UVB. However, as performing routine skin exams, remain paramount in the prevention of phototherapy-induced neoplasia.
更多
查看译文
关键词
dna damage,systematic review
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要