Group Selection as a Basis for Screening Mutagenized Libraries of Public Goods (Bacillus thuringiensis Cry Toxins)

Applied and environmental microbiology(2023)

引用 0|浏览2
暂无评分
摘要
Insecticidal toxins from the bacterium Bacillus thuringiensis are widely exploited in genetically modified plants. This application creates a demand for novel insecticidal toxins that can be used to better manage resistant pests or control new or recalcitrant target species. The pesticidal toxins of Bacillus thuringiensis (Bt) supply the active proteins for genetically modified insect-resistant crops. There is therefore keen interest in finding new toxins, or improving known toxins, in order to increase the mortality of various targets. The production and screening of large libraries of mutagenized toxins are among the means of identifying improved toxins. Since Cry toxins are public goods, and do not confer advantages to producers in competition, conventional directed evolution approaches cannot be used here. Instead, thousands of individual mutants have to be sequenced and assayed individually, a costly and time-consuming process. In this study, we tested a group selection-based approach that could be used to screen an uncharacterized pool of Cry toxin mutants. This involved selecting for infectivity between subpopulations of Bt clones within metapopulations of infected insects in three rounds of passage. We also tested whether additional mutagenesis from exposure to ethyl methanesulfonate could increase infectivity or supply additional Cry toxin diversity during passage. Sequencing of pools of mutants at the end of selection showed that we could effectively screen out Cry toxin variants that had reduced toxicity with our group selection approach. The addition of extra mutagenesis during passage decreased the efficiency of selection for infectivity and did not produce any additional novel toxin diversity. Toxins with loss-of-function mutations tend to dominate mutagenized libraries, and so a process for screening out these mutants without time-consuming sequencing and characterization steps could be beneficial when applied to larger libraries.IMPORTANCE Insecticidal toxins from the bacterium Bacillus thuringiensis are widely exploited in genetically modified plants. This application creates a demand for novel insecticidal toxins that can be used to better manage resistant pests or control new or recalcitrant target species. An important means of producing novel toxins is via high-throughput mutagenesis and screening of existing toxins, a lengthy and resource-intensive process. This study describes the development and testing of an efficient means of screening a test library of mutagenized insecticidal toxins. Here, we showed that it is possible to screen out loss-of-function mutations with low infectivity within a pool without the need to characterize and sequence each mutant individually. This has the potential to improve the efficiency of processes used to identify novel proteins.
更多
查看译文
关键词
cooperation,directed evolution,evolution of virulence,mutagenesis,passage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要