Fast Visible-Light 3D Printing of Conductive PEDOT:PSS Hydrogels

MACROMOLECULAR RAPID COMMUNICATIONS(2024)

引用 0|浏览12
暂无评分
摘要
Functional inks for light-based 3D printing are actively being searched for being able to exploit all the potentialities of additive manufacturing. Herein, a fast visible-light photopolymerization process is showed of conductive PEDOT:PSS hydrogels. For this purpose, a new Type II photoinitiator system (PIS) based on riboflavin (Rf), triethanolamine (TEA), and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is investigated for the visible light photopolymerization of acrylic monomers. PEDOT:PSS has a dual role by accelerating the photoinitiation process and providing conductivity to the obtained hydrogels. Using this PIS, full monomer conversion is achieved in less than 2 min using visible light. First, the PIS mechanism is studied, proposing that electron transfer between the triplet excited state of the dye ((3)Rf*) and the amine (TEA) is catalyzed by PEDOT:PSS. Second, a series of poly(2-hydroxyethyl acrylate)/PEDOT:PSS hydrogels with different compositions are obtained by photopolymerization. The presence of PEDOT:PSS negatively influences the swelling properties of hydrogels, but significantly increases its mechanical modulus and electrical properties. The new PIS has also been tested for 3D printing in a commercially available Digital Light Processing (DLP) 3D printer (405 nm wavelength), obtaining high resolution and 500 & mu;m hole size conductive scaffolds.
更多
查看译文
关键词
3D printing,conducting polymers,hydrogels,PEDOT,PSS,Type II photoinitiator system,visible-light photopolymerization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要