Tandem Guest-Host-Receptor Recognitions Precisely Guide Ciprofloxacin to Eliminate Intracellular Staphylococcus aureus

Angewandte Chemie (International ed. in English)(2023)

引用 1|浏览4
暂无评分
摘要
Staphylococcus aureus (S. aureus) is able to hide within host cells to escape immune clearance and antibiotic action, causing life-threatening infections. To boost the therapeutic efficacy of antibiotics, new intracellular delivery approaches are urgently needed. Herein, by rational design of an adamantane (Ada)-containing antibiotic-peptide precursor Ada-Gly-Tyr-Val-Ala-Asp-Cys(StBu)-Lys(Ciprofloxacin)-CBT (Cip-CBT-Ada), we propose a strategy of tandem guest-host-receptor recognitions to precisely guide ciprofloxacin to eliminate intracellular S. aureus. Via guest-host recognition, Cip-CBT-Ada is decorated with a & beta;-cyclodextrin-heptamannoside (CD-M) derivative to yield Cip-CBT-Ada/CD-M, which is able to target mannose receptor-overexpressing macrophages via multivalent ligand-receptor recognition. After uptake, Cip-CBT-Ada/CD-M undergoes caspase-1 (an overexpressed enzyme during S. aureus infection)-initiated CBT-Cys click reaction to self-assemble into ciprofloxacin nanoparticle Nano-Cip. In vitro and in vivo experiments demonstrate that, compared with ciprofloxacin or Cip-CBT-Ada, Cip-CBT-Ada/CD-M shows superior intracellular bacteria elimination and inflammation alleviation efficiency in S. aureus-infected RAW264.7 cells and mouse infection models, respectively. This work provides a supramolecular platform of tandem guest-host-receptor recognitions to precisely guide antibiotics to eliminate intracellular S. aureus infection efficiently.
更多
查看译文
关键词
Antimicrobials,Caspase-1,Host-Guest Interaction,Nanoparticle,Self-Assembly
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要