Transcriptomic and metabolomic perspectives for the growth of alfalfa (Medicago sativa L.) seedlings with the effect of vanadium exposure.

Chemosphere(2023)

引用 0|浏览5
暂无评分
摘要
Hitherto, the effect of vanadium on higher plant growth remains an open topic. Therefore, nontargeted metabolomic and RNA-Seq profiling were implemented to unravel the possible alteration in alfalfa seedlings subjected to 0.1 mg L (B group) and 0.5 mg L (C group) pentavalent vanadium [(V(V)] versus control (A group) in this study. Results revealed that vanadium exposure significantly altered some pivotal transcripts and metabolites. The number of differentially expressed genes (DEGs) markedly up- and down-regulated was 21 and 23 in B_vs_A, 27 and 33 in C_vs_A, and 24 and 43 in C_vs_B, respectively. The number for significantly up- and down-regulated differential metabolites was 17 and 15 in B_vs_A, 43 and 20 in C_vs_A, and 24 and 16 in C_vs_B, respectively. Metabolomics and transcriptomics co-analysis characterized three significantly enriched metabolic pathways in C_vs_A comparing group, viz., α-linolenic acid metabolism, flavonoid biosynthesis, and phenylpropanoid biosynthesis, from which some differentially expressed genes and differential metabolites participated. The metabolite of traumatic acid in α-linolenic acid metabolism and apigenin in flavonoid biosynthesis were markedly upregulated, while phenylalanine in phenylpropanoid biosynthesis was remarkably downregulated. The genes of allene oxide cyclase (AOC) and acetyl-CoA acyltransferase (fadA) in α-linolenic acid metabolism, and chalcone synthase (CHS), flavonoid 3'-monooxygenase (CYP75B1), and flavonol synthase (FLS) in flavonoid biosynthesis, and caffeoyl-CoA O-methyltransferase (CCoAOMT) in phenylpropanoid biosynthesis were significantly downregulated. While shikimate O-hydroxycinnamoyltransferase (HCT) in flavanoid and phenylpropanoid biosynthesis were conspicuously upregulated. Briefly, vanadium exposure induces a readjustment yielding in metabolite and the correlative synthetic precursors (transcripts/unigenes) in some branched metabolic pathways. This study provides a practical and in-depth perspective from transcriptomics and metabolomics in investigating the effects conferred by vanadium on plant growth and development.
更多
查看译文
关键词
alfalfa,vanadium exposure,seedlings,metabolomic perspectives
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要