Sulfur-decorated Fe/C composite synthesized from MIL-88A(Fe) for peroxymonosulfate activation towards tetracycline degradation: Multiple active sites and non-radical pathway dominated mechanism

Journal of environmental management(2023)

引用 3|浏览6
暂无评分
摘要
Peroxymonosulfate (PMS)-mediated advanced oxidation processes gain growing attention in degrading antibiotics (e.g., tetracycline (TC)) in wastewater for their high capacity and relatively low cost, while designing efficient catalysts for PMS activation remains a challenge. In this study, a sulfur-doped Fe/C catalyst (Fe@C-S) synthesized from iron metal-organic frameworks (Fe-MOFs) was developed for PMS activation towards TC removal. Under optimal conditions, the TC removal efficiency of Fe@C-S150/PMS system within 40 min was 91.2%. Meanwhile, the k value for Fe@C-S150/PMS system (0.2038 min-1) was 3.36-fold as high as the S-free Fe@C-based PMS system. Also, Fe@C-S150/PMS system showed high robustness in different water matrices. Further studies found that the TC degradation mechanism was mainly ascribed to the non-radical pathway (1O2 and electron transfer). Fe nanoparticles, S and C--O groups on the catalyst all participated in the generation of reactive oxygen species (ROS). Besides, S species could enhance the Fe2+/Fe3+ redox cycle and accelerate the electron transfer process. This work highlights the critical role of S in enhancing the catalytic performance of Fe/ C-based catalysts for PMS activation, which would provide meaningful insights into the design of highperformance PMS activators for the sustainable remediation of emerging contaminants-polluted water bodies.
更多
查看译文
关键词
Antibiotics,Wastewater treatment,Metal-organic frameworks,Catalysts,Advanced oxidation processes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要