The alternate pathway of androgen metabolism and window of sensitivity.

The Journal of endocrinology(2023)

引用 0|浏览2
暂无评分
摘要
Since the discovery in 1968 that dihydrotestosterone (DHT) is a major mediator of androgen action, a convincing body of evidence has accumulated to indicate that the major pathway of DHT formation is the 5α-reduction of circulating testosterone in androgen target tissues. However, we now know that DHT can also be formed in peripheral tissues by the oxidation of 5α-androstane-3α,17β-diol (Adiol). This pathway is responsible for the formation of the male phenotype. We discuss the serendipitous discovery in the tammar wallaby of an alternate pathway by which Adiol is formed in the testes, secreted into plasma and converted in peripheral tissues to DHT. This alternate pathway is responsible for virilisation of the urogenital system in this species and is present in the testes at the onset of male puberty of all mammals studied so far. This is the first clear-cut function for steroid 5α-reductase 1 in males. Unexpectedly, discovery of this pathway in this Australian marsupial has had major impact in understanding the pathophysiology of aberrant virilisation in female newborns. Overactivity of the alternate pathway appears to explain virilisation in congenital adrenal hyperplasia CAH, in X-linked 46XY disorders of sex development. It also appears to be important in polycystic ovarian syndrome (PCOS) since PCOS ovaries have en¬hanced expression of genes and proteins of the alternate pathway. It is now clear that normal male development in marsupials, rodents and humans requires the action of both the classic and the alternate (backdoor) pathways.
更多
查看译文
关键词
androgen metabolism,alternate pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要