α-amanitin induces autophagy through AMPK-mTOR-ULK1 signaling pathway in hepatocytes.

Toxicology letters(2023)

引用 1|浏览3
暂无评分
摘要
Amanitin poisoning is one of the most life-threatening mushroom poisonings. α-Amanitin plays a key role in Amanita phalloides intoxication. α-Amanitin shows toxic effects on the liver. However, the mechanism by which α-amanitin induces liver injury has not been elucidated. Autophagy plays a crucial role in maintaining cellular homeostasis and is closely related to the occurrence of a variety of diseases. Studies have shown that autophagy may play an important role in the process of α-amanitin-induced liver injury. However, the mechanism of α-amanitin-induced autophagy remains unclear. Thus, this study aimed to explore the mechanisms of α-amanitin in inducing hepatotoxicity in Sprague Dawley (SD) rats and the normal human liver cell line L02 cells. The SD rats and L02 cells exposed to α-amanitin were observed to determine whether α-amanitin could induce the autophagy of rat liver and L02 cells. The regulatory relationship between autophagy and the AMPK-mTOR- ULK pathway by exposing the autophagy agonist (rapamycin (RAPA)), autophagy inhibitor (3-methylademine (3-MA)), and AMPK inhibitor (compound C) was also explored. Autophagy-related proteins and AMPK-mTOR-ULK pathway-related proteins were detected using Western blot. The results of the study indicated that exposure to different concentrations of α-amanitin led to morphological changes in liver cells and significantly elevated levels of ALT and AST in the serum of SD rats. Additionally, the expression levels of LC3-II, Beclin-1, ATG5, ATG7, AMPK, p-AMPK, mTOR, p-mTOR, and ULK1 were significantly increased in the rat liver. And we found that L02 cells exposed to 0.5μM α-amanitin for 6h significantly induced autophagy and activated the AMPK-mTOR-ULK1 pathway. Pretreated with RAPA, 3-MA, and compound C for 1h, the expression levels of autophagy-related proteins and AMPK-mTOR-ULK pathway-related proteins significantly changed. Our results indicates that autophagy and the AMPK-mTOR-ULK pathway are involved in the process of α-amanitin-induced liver injury. This study may foster the identification of actionable therapeutic targets for A. phalloides intoxication.
更多
查看译文
关键词
α-amanitin,Autophagy,AMPK-mTOR-ULK1 signaling pathway,L02 cells,Liver injury
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要