Enhanced microorganism attachment and flavin excretion in microbial fuel cells via an N,S-codoped carbon microflower anode.

Journal of colloid and interface science(2023)

引用 0|浏览8
暂无评分
摘要
Commonly used dense arrays of nanomaterials on carbon cloth (CC) are not suitable to accommodate microorganisms in microbial fuel cells (MFCs) due to their unmatched size. To simultaneously enrich exoelectrogens and accelerate the extracellular electron transfer (EET) process, SnS2 nanosheets were selected as sacrificial templates to prepare binder-free N,S-codoped carbon microflowers (N,S-CMF@CC) by polymer coating and pyrolysis. N,S-CMF@CC showed a cumulative total charge of 125.70C/m2, approximately 2.11 times higher than that of CC, indicating its better electricity storage capacity. Moreover, the interface transfer resistance and diffusion coefficient in bioanodes were 42.68 Ω and 9.27 × 10-10 cm2/s, respectively, superior to CC (141.3 Ω and 1.06 × 10-11 cm2/s). Remarkably, N,S-codoped carbon microflowers excreted more flavin than CC, as confirmed by continuous fluorescence monitoring. Biofilm and 16S rRNA gene sequence analysis revealed that exoelectrogens were enriched, and nanoconduits were generated on the N,S-CMF@CC anode. In particular, flavin excretion was also promoted on our hierarchical electrode, effectively driving the EET process. MFCs equipped with the N,S-CMF@CC anode could deliver a power density of 2.50 W/m2, coulombic efficiency of 22.77 %, and chemical oxygen demand (COD) removal amount of 90.72 mg/L/d, higher than that of bare CC. These findings not only demonstrate that our anode is capable of solving the cell enrichment issue, but it may also increase EET rates by bound flavin with outer membrane c-type cytochromes (OMCs) to simultaneously boost the power generation and wastewater treatment performance of MFCs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要