Quantitative analysis and correlative evaluation of video-oculography, micro-computed tomography, and histopathology in Pendrin-null mice.

Neurobiology of disease(2023)

引用 0|浏览1
暂无评分
摘要
Patients with SLC26A4 mutations exhibit highly variable hearing loss and vestibular dysfunction. Although Slc26a4 mutant mice similarly exhibit vestibular deficits, including circling behavior, head tilting, and torticollis, the underlying pathogenesis of the vestibular symptoms remains unclear, hindering its effective management for patients with SLC26A4 mutations. In this study, we evaluated the equilibrium function using the inspection equipment, which can record eye movements against rotational, gravitational, and thermal stimulations. Moreover, we correlated the degree of functional impairment with the morphological alterations observed in Slc26a4Δ/Δ mice. The rotational stimulus and ice water caloric tests revealed considerable impairment of the semicircular canal, while the tilted gravitational stimulus test showed a severe functional decline of the otolithic system in Slc26a4Δ/Δ mice. Generally, the degree of impairment was more severe in circling Slc26a4Δ/Δ mice than in non-circling Slc26a4Δ/Δ mice. In non-circling Slc26a4Δ/Δ mice, the semicircular canal function was normal. Micro-computed tomography results showed enlargement of the vestibular aqueduct and bony semicircular canals but no correlative relationship between the severity of the caloric response and the size of bony labyrinths. Giant otoconia and a significant decrease in total otolith volume in the saccule and utricle were observed in Slc26a4Δ/Δ mice. However, the giant otoconia were not overly dislocated in the bony otolithic system and ectopic otoconia were absent in the semicircular canal. The number and morphology of the utricular hair cells in Slc26a4Δ/Δ mice were not significantly reduced compared to those in Slc26a4Δ/+ mice. Collectively, we can conclude that vestibular impairments are mainly associated with otoconia formation and morphology rather than hair cell degeneration. In addition, severe disturbances of semicircular canals cause circling behavior in Slc26a4Δ/Δ mice. Our comprehensive morphological and functional assessments apply to mouse models of other genetic diseases with vestibular impairment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要