Comprehensive screening of a light-inducible split Cre recombinase with domain insertion profiling.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览3
暂无评分
摘要
Splitting proteins with light- or chemically-inducible dimers provides a mechanism for post-translational control of protein function. However, current methods for engineering stimulus-responsive split proteins often require significant protein engineering expertise and laborious screening of individual constructs. To address this challenge, we use a pooled library approach that enables rapid generation and screening of nearly all possible split protein constructs in parallel, where results can be read out using sequencing. We perform our method on Cre recombinase with optogenetic dimers as a proof of concept, resulting in comprehensive data on split sites throughout the protein. To improve accuracy in predicting split protein behavior, we develop a Bayesian computational approach to contextualize errors inherent to experimental procedures. Overall, our method provides a streamlined approach for achieving inducible post-translational control of a protein of interest.
更多
查看译文
关键词
split proteins, domain insertion profiling, optogenetics, Cre recombinase, Bayesian inference, protein engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要