Development of human cell-expressed tag-free rhMFG-E8 as a radiation mitigator and a therapeutic for acute kidney injury.

Research square(2023)

引用 0|浏览3
暂无评分
摘要
Background Human milk fat globule epidermal growth factor-factor VIII (MFG-E8) functions as a bridging molecule to promote the removal of dying cells by professional phagocytes. E. coli-expressed histidine-tagged recombinant human MFG-E8 (rhMFG-E8) is protective in various disease conditions. However, due to improper recombinant protein glycosylation, misfolding and possible antigenicity, E. coliexpressed histidine-tagged rhMFG-E8 is unsuitable for human therapy. Therefore, we hypothesize that human cell-expressed, tag-free rhMFG-E8 can be developed as a safe and effective novel biologic to treat inflammatory diseases such as radiation injury and acute kidney injury (AKI). Methods We produced a new tag-free rhMFG-E8 protein by cloning the human MFG-E8 full-length coding sequence without any fusion tag into a mammalian vector and expressed it in HEK293-derived cells. The construct includes the leader sequence of cystatin S to maximize secretion of rhMFG-E8 into the culture medium. After purification and confirmation of the protein identity, we first evaluated its biological activity in vitro. We then determined its efficacy in vivo utilizing two experimental rodent models of organ injury: partial body irradiation (PBI) and ischemia/reperfusion-induced AKI. Results HEK293 cell supernatant containing tag-free rhMFG-E8 protein was concentrated, purified, and rhMFG-E8 was verified by SDS-PAGE analysis and mass spectrometry. The biological activity of human cell-expressed tag-free rhMFG-E8 was superior to that of E. coli-expressed His-tagged rhMFG-E8. Toxicity, stability, and pharmacokinetic studies indicate that tag-free rhMFG-E8 is safe, highly stable after lyophilization and long-term storage, and with an adequate half-life for therapeutic applications. In the PBI model, a dose-dependent improvement of the 30-day survival rate was observed after tag-free rhMFG-E8 treatment with a 30-day survival of 89%, which was significantly higher than the 25% survival in the vehicle group. The dose modification factor (DMF) of tag-free rhMFG-E8 was 1.073. Tag-free rhMFG-E8 also attenuated gastrointestinal damage after PBI. In the model of AKI, tag-free rhMFG-E8 treatment significantly attenuated kidney injury and inflammation, and improved the 10-day survival. Conclusion Our new human cell-expressed tag-free rhMFG-E8 can be further developed as a safe and effective therapy to treat victims of severe acute radiation injury and patients with acute kidney injury.
更多
查看译文
关键词
acute kidney injury,radiation,cell-expressed,tag-free
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要