Dynamic nuclear polarization illuminates key protein-lipid interactions in the native bacterial cell envelope.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览8
暂无评分
摘要
Elucidating the structure and interactions of proteins in native environments has become a fundamental goal of structural biology. Nuclear magnetic resonance (NMR) spectroscopy is well suited for this task but often suffers from low sensitivity, especially in complex biological settings. Here, we use a sensitivity-enhancement technique called dynamic nuclear polarization (DNP) to overcome this challenge. We apply DNP to capture the membrane interactions of the outer membrane protein Ail, a key component of the host invasion pathway of Yersinia pestis . We show that the DNP-enhanced NMR spectra of Ail in native bacterial cell envelopes are well resolved and enriched in correlations that are invisible in conventional solid-state NMR experiments. Furthermore, we demonstrate the ability of DNP to capture elusive interactions between the protein and the surrounding lipopolysaccharide layer. Our results support a model where the extracellular loop arginine residues remodel the membrane environment, a process that is crucial for host invasion and pathogenesis.
更多
查看译文
关键词
dynamic nuclear polarization,protein–lipid interactions,key protein–lipid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要