Development of a High-SNR Stochastic sEMG Processor in a Multiple Muscle Elbow Joint.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society(2023)

引用 0|浏览1
暂无评分
摘要
In the robotics and rehabilitation engineering fields, surface electromyography (sEMG) signals have been widely studied to estimate muscle activation and utilized as control inputs for robotic devices because of their advantageous noninvasiveness. However, the stochastic property of sEMG results in a low signal-to-noise ratio (SNR) and impedes sEMG from being used as a stable and continuous control input for robotic devices. As a traditional method, time-average filters (e.g., low-pass filters) can improve the SNR of sEMG, but time-average filters suffer from latency problems, making real-time robot control difficult. In this study, we propose a stochastic myoprocessor using a rescaling method extended from a whitening method used in previous studies to enhance the SNR of sEMG without the latency problem that affects traditional time average filter-based myoprocessors. The developed stochastic myoprocessor uses 16 channel electrodes to use the ensemble average, 8 of which are used to measure and decompose deep muscle activation. To validate the performance of the developed myoprocessor, the elbow joint is selected, and the flexion torque is estimated. The experimental results indicate that the estimation results of the developed myoprocessor show an RMS error of 6.17[%], which is an improvement with respect to previous methods. Thus, the rescaling method with multichannel electrodes proposed in this study is promising and can be applied in robotic rehabilitation engineering to generate rapid and accurate control input for robotic devices.
更多
查看译文
关键词
semg processor,muscle,high-snr
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要