RyR2 inhibition with dantrolene is antiarrhythmic, prevents further pathological remodeling, and improves cardiac function in chronic ischemic heart disease.

Journal of molecular and cellular cardiology(2023)

引用 1|浏览6
暂无评分
摘要
Diastolic Ca leak due to cardiac ryanodine receptor (RyR2) hyperactivity has been widely documented in chronic ischemic heart disease (CIHD) and may contribute to ventricular tachycardia (VT) risk and progressive left-ventricular (LV) remodeling. Here we test the hypothesis that targeting RyR2 hyperactivity can suppress VT inducibility and progressive heart failure in CIHD by the RyR2 inhibitor dantrolene. METHODS AND RESULTS: CIHD was induced in C57BL/6 J mice by left coronary artery ligation. Four weeks later, mice were randomized to either acute or chronic (6 weeks via implanted osmotic pump) treatment with dantrolene or vehicle. VT inducibility was assessed by programmed stimulation in vivo and in isolated hearts. Electrical substrate remodeling was assessed by optical mapping. Ca sparks and spontaneous Ca releases were measured in isolated cardiomyocytes. Cardiac remodeling was quantified by histology and qRT-PCR. Cardiac function and contractility were measured using echocardiography. Compared to vehicle, acute dantrolene treatment reduced VT inducibility. Optical mapping demonstrated reentrant VT prevention by dantrolene, which normalized the shortened refractory period (VERP) and prolonged action potential duration (APD), preventing APD alternans. In single CIHD cardiomyocytes, dantrolene normalized RyR2 hyperactivity and prevented spontaneous intracellular Ca release. Chronic dantrolene treatment not only reduced VT inducibility but also reduced peri-infarct fibrosis and prevented further progression of LV dysfunction in CIHD mice. CONCLUSIONS: RyR2 hyperactivity plays a mechanistic role for VT risk, post-infarct remodeling, and contractile dysfunction in CIHD mice. Our data provide proof of concept for the anti-arrhythmic and anti-remodeling efficacy of dantrolene in CIHD.
更多
查看译文
关键词
ryr2 inhibition,dantrolene,cardiac function
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要