Electrochemical CNT filter functionalized with metal-organic framework for one-step antimonite decontamination.

Chemosphere(2023)

引用 0|浏览2
暂无评分
摘要
Currently, there is a lack of advanced nanotechnology designed to efficiently remove antimony (Sb) from contaminated water systems. Sb most commonly appears as antimonite (Sb(III)) or as the anion antimonate (Sb(V)). Sb(III) is approximately ten times more toxic than Sb(V), and Sb(III) is also harder to eliminate because of its motility and charge neutrality. The work presented here developed an electrochemical filtration technology for the direct elimination of Sb(III) from contaminated water. The primary components of the filtration system are an electroactive carbon nanotube (CNT) membrane that are functionalized with the Sb-specific UiO-66(Zr), an organometallic framework. In an electric field, the UiO-66(Zr)/CNT nanohybrid filter enabled in situ transformation of Sb(III) to less harmful Sb(V). The Sb(V) was then effectively adsorbed by the UiO-66(Zr). The removal efficiency (90.5%) and rate constant (k = 0.0272 min) toward Sb(III) removal was 1.3 and 1.4 times greater than that of CNT filter. The filter's abundance of available adsorption sites, flow-through construction, and electrochemical activity combined to rapidly remove Sb(III) from water. The underlying functioning of the nanohybrid filter was determined with a series of process experiments and structural characterizations. The filter was effective over a broad range of pH values and in a variety of complex aqueous environments. Once loaded with Sb, the UiO-66(Zr)/CNT filter could be washed with a dilute NaOH solution to efficiently refresh its activity. The results of this work offer a direct, efficient strategy that integrates nanotechnology, electrochemistry, and membrane separation to remove antimony and potentially other heavy metals from contaminated water.
更多
查看译文
关键词
Antimonite,Electric field,Oxidation-adsorption,Continuous-flow,Metal-organic frameworks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要