Biomechanical analysis of rod contouring in posterior spinal instrumentation and fusion for 3D correction of adolescent idiopathic scoliosis

Spine deformity(2023)

引用 0|浏览3
暂无评分
摘要
Purpose To biomechanically evaluate 3D corrective forces and deformity correction attributable to key parameters of rod contouring in posterior spinal fusion (PSF) for adolescent idiopathic scoliosis (AIS). Methods Computerised patient-specific biomechanical models of six AIS cases were used to simulate PSF and evaluate the effects of 5.5-mm cobalt-chrome rod contouring angle (concave–convex angles: 30°−15°, 45°−15° and 60°−15°), length (spanning 4 and 7 vertebrae), and apex location (T7, T9). 3D correction and bone-implant forces were computed and analysed. Results By increasing the concave rod contour from 30° to 60°, thoracic kyphosis (TK) increased from 18° ± 2° (15°−19°) to 24° ± 2° (22°−26°), apical vertebra rotation (AVR) correction increased from 41% (SD8%) to 66% (SD18%) whilst the main thoracic curve (MT) correction decreased from 68% (SD6%) to 56% (SD8%). With a contouring length of 4 vs. 7 vertebrae, the resulting TK, AVR and MT corrections were 22° ± 1° (19°−26°) vs. 19° ± 10° (15°−22°), 57% (SD18%) vs. 50% (SD26%) and 59% (SD1%) vs. 69% (SD35%), respectively. With the rod contouring apex at T7 (vs. T9), AVR corrections were 69% (SD19%) vs. 44% (SD9%), with no significant difference in TK and MT corrections, and with comparatively 67% of screw pull-out forces. Corrective forces were more evenly shared with fixation on 7 vs. 4 vertebrae. Conclusion Rod contouring of a greater angulation, over a shorter portion of the rod, and more centred at the apex of the main thoracic curve apex improved AVR correction and allowed greater restoration of TK, but resulted in significantly higher screw pull-out forces and came at the expense of less coronal plane correction.
更多
查看译文
关键词
Adolescent idiopathic scoliosis,Posterior spinal fusion,Rod contouring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要