Climate change impacts of conventional sewage sludge treatment and disposal.

Water research(2023)

引用 4|浏览6
暂无评分
摘要
Sewage sludge (SS) management remains a challenge across the world. We quantified the potential climate change impacts of eight conventional technology configurations (TCs) for SS treatment and disposal by considering four different energy exchanges and using a life cycle assessment (LCA) model that employed uncertainty distributions for 104 model parameters. All TCs showed large climate change loads and savings (net values ranging from 123 to 1148 kg CO2-eq/t TS) when the energy exchange was with a fossil-based energy system, whereas loads and savings were approximately three times lower when the energy exchange was with a renewable energy system. Uncertainty associated with the climate change results was more than 100% with fossil-energy exchange and low TS content of SS but was lower for renewable energy. Landfilling had the greatest climate change impact, while thermal drying with incineration had the highest probability of providing better climate change performance than other TCs. The global sensitivity analysis identified nine critical technological parameters. Many of them can be easily measured for relevant SS and technology levels to improve specific estimates of climate change impact. When all scenarios were optimized to the 20% best cases, thermal drying with incineration outperformed the other TCs. This paper contributes to better quantifying the climate change impacts of different technologies used for sludge treatment given changing energy systems and identifies crucial parameters for further technological development.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要