Transcriptional response of endometrial cells to Insulin, cultured using microfluidics.

Reproduction & fertility(2023)

引用 0|浏览14
暂无评分
摘要
Obesity is a rapidly growing public health issue among women of reproductive age associated with decreased reproductive function including implantation failure. This can result from a myriad of factors including impaired gametes and endometrial dysfunction. The mechanisms of how obesity-related hyperinsulinaemia disrupts endometrial function are poorly understood. We investigated potential mechanisms by which insulin alters endometrial transcript expression. Ishikawa cells were seeded into a microfluidics device attached to a syringe pump to deliver a constant flow rate of 1uL/min of the following: 1) control 2) vehicle control (acetic acid) or, 3) Insulin (10 ng/ml) for 24 hours (n=3 biological replicates). Insulin-induced transcriptomic response of endometrial epithelial cells was determined via RNA sequencing, and DAVID and Webgestalt to identify Gene Ontology (GO) terms and signalling pathways. A Total of 29 transcripts showed differential expression levels across two comparison groups (control v vehicle control; vehicle control v insulin). Nine transcripts were differentially expressed in vehicle control v insulin comparison (p<0.05). Functional annotation analysis of transcripts altered by insulin (n=9) identified three significantly enriched GO terms: SRP-dependent cotranslational protein targeting to membrane, poly(A) binding, and RNA binding (p<0.05). Over-representation analysis found three significantly enriched signalling pathways relating to insulin-induced transcriptomic response: protein export, glutathione metabolism, and ribosome pathways (p<0.05). Transfection of siRNA for RASPN successfully knocked down expression (p<0.05) but this did not have any effect on cellular morphology. Insulin-induced dysregulation of biological functions and pathways highlight potential mechanisms by which high insulin concentrations within maternal circulation may perturb endometrial receptivity.
更多
查看译文
关键词
uterus, endocrinology of reproduction, microfluidics, insulin, transcriptomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要