Glycosaminoglycan-directed cobalt complexes.

Journal of inorganic biochemistry(2023)

引用 0|浏览13
暂无评分
摘要
The biological activity of the 6+ Co containing Werner's Complex has been described and mechanistic considerations suggest that the highly anionic glycosaminoglycans (heparan sulfate, HS, GAGs) are implicated in this activity [Paiva et al. 2021]. To examine in detail the molecular basis of Werner's Complex biological properties we have examined a selection of simple mononuclear Co3+ compounds for their interactions with HS and Fondaparinux (FPX). FPX is a highly sulfated synthetic pentasaccharide used as a model HS substrate [Mangrum et al. 2014, Peterson et al. 2017]. The Co complexes were chosen to be formally substitution-inert and/or have the potential for covalent binding to the biomolecule. Using both indirect competitive inhibition assays and direct mass spectrometric assays, formally substitution-inert complexes bound to FPX with protection from multiple sulfate loss in the gas phase through metalloshielding. Covalent binding of Co-Cl complexes as in [CoCl(NH3)5]2+ and cis-[CoCl2(en)2]+ was confirmed by mass spectrometry. Interestingly, the former complex was shown to be an effective inhibitor of bacterial heparinase enzyme activity and to inhibit heparanase-dependent cellular invasion through the extracellular matrix (ECM). Pursuing the theme of metalloglycomics, we have observed the hitherto unappreciated biological activity of the simple [CoCl(NH3)5]2+ compound, a staple of most inorganic chemistry lab curricula.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要