Method for siRNA delivery in retina explants

Methods in cell biology(2023)

引用 0|浏览7
暂无评分
摘要
Several barriers prevent the delivery of nucleic acids to the retina and limit the application of established technologies, such as RNA interference (RNAi), in the study of retinae biology. Organotypic culture of retinal explants is a convenient method to decrease the complexity of the biological environment surrounding the retina while preserving most of its physiological features. Nevertheless, eliciting significant, non-toxic RNAi in retina explants is not straightforward. Retina explants are mainly constituted by neurons organized in discrete circuits embedded within a complex 3D extracellular matrix. About 70% of these neurons are post-mitotic ciliated cells that respond to light. Unfortunately, like the other cells of the retina, photoreceptors are refractory to transfection, and a toxic delivery of nucleic acid often results in permanent cell loss. RNAi has been applied to retina explants using electroporation, viral, and non-viral vectors but with reproducible, poor gene silencing efficiency. In addition, only a few superficial cells can be transduced/transfected in adult retina explants. Therefore, viruses are often injected into the eye of embryos prior to excision of the retina. However, embryonic explants are not the best model to study most retina diseases since even if they are viable for several weeks, the pathological phenotype often appears later in development. We describe a robust and straightforward method to elicit significant RNAi in adult retina explant using Reverse Magnetofection. This transfection method offers a simple tool for nontoxic gene knockdown of specific genes in adult retina explants by using cationic magnetic nanoparticles (MNPs) to complex and deliver short interfering-RNAs (siRNA) in retina cells under the action of a magnetic field.
更多
查看译文
关键词
retina explants,sirna delivery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要