Production of Sitobion avenae-resistant Triticum aestivum cvs using laccase as RNAi target and its systemic movement in wheat post dsRNA spray.

PloS one(2023)

引用 0|浏览4
暂无评分
摘要
Among the wheat biotic stresses, Sitobion avenae is one of the main factors devastating the wheat yield per hectare. The study's objective was to find out the laccase (lac) efficacy; as a potential RNAi target against grain aphids. The Sitobion avenae lac (Salac) was confirmed by Reverse Transcriptase-PCR. Gene was sequenced and accession number "ON703252" was allotted by GenBank. ERNAi tool was used to design 143 siRNA and one dsRNA target. 69% mortality and 61% reduction in lac expression were observed 8D-post lac DsRNA feeding. Phylogenetic analysis displayed the homology of grain aphid lac gene with peach potato, pea, and Russian wheat aphids. While Salac protein was found similar to the Russian grain, soybean, pea, and cedar bark aphid lac protein multi-copper oxidase. The dsRNAlac spray-induced silencing shows systematic translocation from leaf to root; with maximum lac expression found in the root, followed by stem and leaf 9-13D post-spray; comparison to control. RNAi-GG provides the Golden Gate cloning strategy with a single restriction ligation reaction used to achieve lac silencing. Agrobacterium tumefaciens mediated in planta and in-vitro transformation was used in the study. In vitro transformation, Galaxy 2012 yielded a maximum transformation efficiency (1.5%), followed by Anaj 2017 (0.8%), and Punjab (0.2%). In planta transformation provides better transformation efficiencies with a maximum in Galaxy 2012 (16%), and a minimum for Punjab (5%). Maximum transformation efficiency was achieved for all cultivars with 250 μM acetosyringone and 3h co-cultivation. Galaxy 2012 exhibited maximum transformation efficiency, and aphid mortality post-feeding transgenic wheat.
更多
查看译文
关键词
dsrna spray,rnai target,wheat post,avenae-resistant
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要