New insights into the oxidative damage and antioxidant defense mechanism in Manila clams (Ruditapes philippinarum) exposed to 8:2 polyfluoroalkyl phosphate diester stress.

Aquatic toxicology (Amsterdam, Netherlands)(2023)

引用 1|浏览2
暂无评分
摘要
8:2 perfluoroalkyl phosphate diester (8:2 diPAP) is the main precursor of perfluoroalkyl carboxylic acids, and it has been detected in a wide range of environments. In this study, conventional biochemical and histopathological analyses and transcriptome methods were used to investigate the accumulation and oxidative stress of 8:2 diPAP in Manila clams (Ruditapes philippinarum) as well as the clam's defense mechanisms for the first time. The hepatopancreas was the main target organ for 8:2 diPAP accumulation; the concentration reached 484.0 ± 15.5 ng/g after 7 days of exposure to 10 μg/L of 8:2 diPAP, which was 2-100 times higher than that found in other organs. 8:2 diPAP accumulation resulted in significant lipid peroxidation, and the change in malondialdehyde content was highly correlated with 8:2 diPAP accumulation (r > 0.8). The antioxidant enzymes catalase and peroxidase were significantly activated at 7 days of exposure. Although the levels subsequently returned to normal, this restoration was unable to prevent damage. Histopathological analysis showed that 8:2 diPAP exposure resulted in inflammatory damage to the hepatopancreas, which failed to resolve during the recovery period. Transcriptomic analyses showed that the expression of differentially expressed genes had different degrees of positive/negative correlation with antioxidant indicators, and they were significantly enriched in cell death regulatory pathways such as autophagy, apoptosis, and necrosis. The core factor expression results indicated that 8:2 diPAP exposure induced activation of the organismal autophagy factor followed by a shift towards apoptosis. In addition, pathways related to amino acid metabolism and energy metabolism were involved in determining the cell fate of Manila clams. Overall, these results indicated that 8:2 diPAP induced peroxidation of membrane lipids, disturbed physiological processes, and ultimately initiated programmed cell death in Manila clams. The findings of this study provide new insights into the mechanism of toxicity of 8:2 diPAP exposure in marine bivalves.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要